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Objetive of the presentation

In this presentation we want to show how to discretize the Laplacian oper-
ator through rectangular and triangular meshes, and as this allows to solve
differential equations in partial derivatives through of systems of linear
equations. An example is given about the solution of the heat equation in
the one-dimensional and two-dimensional cases, and the Poisson equation
using the Galerkin approximation.

Later we will explain what is the Heat Method to find the geodesic distance
in general manifolds, and we will show how we want to articulate this
method to the diffusion kernels that we have studied previously.
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Introduction

Let u be a real function of three variables, u = u(x , y , z), the Gradient of
this function represents a vector field given by

∇u =
∂u

∂x
i +

∂u

∂y
j +

∂u

∂z
k = X ,

while its Divergence and its Laplacian are scalar fields expressed as

∆u =
∂2u

∂2x
+
∂2u

∂2y
+
∂2u

∂2z
= ∇ · X = ∇ · (∇u) .

The expression ∆u = ∇ · (∇u) is not always fulfilled, for this we resort to
the generalization of this operator known as Laplace-Beltrami and given
by equality

∆gu =
1

√

det g

∑

j

∂

∂xj

(
∑

i

g ij
√

det g
∂u

∂xi

)

, (1)

where g is the metric associated with the coordinates (x1, x2, . . . , xn) in
the manifold.
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Classic PEDs

There are many partial differential equations very important in studies of
physics, chemistry and engineering, four of them are

1 Laplace equation: ∆u = 0. In problems of: flows of a fluid,
electrostatics.
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Classic PEDs

There are many partial differential equations very important in studies of
physics, chemistry and engineering, four of them are

1 Laplace equation: ∆u = 0. In problems of: flows of a fluid,
electrostatics.

2 Poisson equation: ∆u = g . In problems of: gravitational potential.
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Classic PEDs

There are many partial differential equations very important in studies of
physics, chemistry and engineering, four of them are

1 Laplace equation: ∆u = 0. In problems of: flows of a fluid,
electrostatics.

2 Poisson equation: ∆u = g . In problems of: gravitational potential.

3 Heat equation: ∆u = α∂u
∂t

. In problems of: heat transfer.
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Classic PEDs

There are many partial differential equations very important in studies of
physics, chemistry and engineering, four of them are

1 Laplace equation: ∆u = 0. In problems of: flows of a fluid,
electrostatics.

2 Poisson equation: ∆u = g . In problems of: gravitational potential.

3 Heat equation: ∆u = α∂u
∂t

. In problems of: heat transfer.

4 Wave equation: ∆u = 1
c2
∂2u
∂t2

. In problems of: acoustics, quantum
mechanics.
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Laplacian operator in one dimension

Consider a function u(x) of a variable with derivatives of all orders. Let vi
be a given point and h an increase in both directions, it will be denoted
by ui = u(vi ), ui+1 = u(vi + h) y ui−1 = u(vi − h).

b

vi

b

vi + h

vi+1
b

vi − h

vi−1

hh

From Tylor’s serie is posible to express a function as a linear combination
of its derivates through

u (vi+1) ≈ u(vi ) + u(1)(vi )h +
1

2
u(2)(vi )h

2 +
1

6
u(3)(vi )h

3 +
1

24
u(4)(vi )h

4 ,

u (vi−1) ≈ u(vi )− u(1)(vi )h +
1

2
u(2)(vi )h

2 −
1

6
u(3)(vi )h

3 +
1

24
u(4)(vi )h

4 .
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Laplacian operator in one dimension

Subtracting and adding both expressions it is possible to conclude equalities

u′(vi ) =
1

2h
[u(vi+1)− u(vi−1)] + o(h3) .



Laplacian operator in one dimension

Subtracting and adding both expressions it is possible to conclude equalities

u′(vi ) =
1

2h
[u(vi+1)− u(vi−1)] + o(h3) .

u′′(vi ) =
1

h2
[u(vi+1) + u(vi−1)− 2u(vi )] + o(h4) .
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Laplacian operator in one dimension

Subtracting and adding both expressions it is possible to conclude equalities

u′(vi ) =
1

2h
[u(vi+1)− u(vi−1)] + o(h3) .

u′′(vi ) =
1

h2
[u(vi+1) + u(vi−1)− 2u(vi )] + o(h4) .

There are alternative equations to discretize the first derivative by means
of this method called Finite Differences. Two alternative expressions are

u′(vi ) =
1

h
[u(vi+1)− u(vi )]

︸ ︷︷ ︸

difference forward

y u′(vi ) =
1

h
[u(vi )− u(vi−1)]

︸ ︷︷ ︸

difference backward

.
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Laplacian operator in one dimension

Subtracting and adding both expressions it is possible to conclude equalities

u′(vi ) =
1

2h
[u(vi+1)− u(vi−1)] + o(h3) .

u′′(vi ) =
1

h2
[u(vi+1) + u(vi−1)− 2u(vi )] + o(h4) .

There are alternative equations to discretize the first derivative by means
of this method called Finite Differences. Two alternative expressions are

u′(vi ) =
1

h
[u(vi+1)− u(vi )]

︸ ︷︷ ︸

difference forward

y u′(vi ) =
1

h
[u(vi )− u(vi−1)]

︸ ︷︷ ︸

difference backward

.

Laplacian operator for a function of one variable is written as

(∆u)vi =
1

h2

∑

j∼i

(u(vj )− u(vi )) , (2)

where j ∼ i means neighboring vertices to vi .
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Laplacian operator in a rectangular mesh

If the function is of two variables let us
say u = u(x , y) then Laplacian is the sum
of the partial derivatives of order 2 for
the two variables, in this case, Laplacian
operator at a point vi = (xi , yi ) is of the
form

b

(xi , yi)

h

h

u

u

u

u

(∆u)vi =
1

h2
[u(xi+1, yi) + u(xi−1, yi ) + u(xi , yi−1) + u(xi , yi+1)− 4u(xi , yi )] ,

(∆u)vi =
1

h2
︸︷︷︸

weight

∑

j∼i

(u(vj )− u(vi )) .

The term h2 represents the area of each of the squares in the rectangular
mesh, however the increments in x and in y may be differents.
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Heat equation in one dimension

Heat equation can be defined as ∂u
∂t

= α∆u where α is a constant called
diffusivity of the material, while u is the temperature distribution for a
specific position and times. In the expression uki the subscript indicates the
position in the bar (the vertex) and the superscript the temporal moment

Bar: If we consider a bar of length
L (with steps of h units) and ∆t

the discretization of time, then
the solution for finite differences is
written as

uki−1 uki+1uki

uk+1
i

Spatial
discretization

T
e
m

p
o
ra

ry
d
is
c
re

ti
z
a
ti
o
n

uk+1
i = r

(
uki+1 + uki−1

)
+ (1 − 2r)uki where r =

α∆t

h2
. (3)

For the solution to be convergent to the theoretical solution it is necessary

that 0 < 1 − 2r < 1 in that case, ∆t < h2

2α
, so the choice of temporal

discretization is not arbitrary.
Juan Carlos Arango Parra Discretization of Laplacian Operator



Example 1 in one dimension

Consider a bar of length L, the heat equation defined on it with conditions
of border and initials is given by







ut = αuxx ,

u(L, t) = 0 for all t > 0,

u(0, t) = 0 for all t > 0,

u(x , 0) = f (x) = x(L− x) for all x ∈ [0, L] .

Analytical solution by separation of variables is

u(x , t) =

∞∑

n=1

8L2

π3(2n − 1)3
exp

(

−
α(2n− 1)2π2

L2
t

)

sin

(
(2n − 1)π

L
x

)

.

(4)

For the simulation, L = 1 and α = 0.001 were assumed.
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Example 1 in one dimension

Green line represents the function f (x) = x(L− x) of the initial condition.
Blue line with the diamonds represents the approximate solution with the
finite differences and the red line is the analytical solution, both for a time
t = 30.
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Example 2 in one dimension

In this second example, again we will take the bar length L and the condi-
tions







ut = αuxx ,

u(L, t) = 100 for all t > 0,

u(0, t) = 0 for all t > 0,

u(x , 0) = 0 for all x ∈ [0, L] .

The analytical solution of this system is

u(x , t) =
100

L
x +

∞∑

n=1

200

nπ
cos(nπ) exp

(

−
αn2π2

L2
t

)

sin
(nπ

L
x
)

. (5)

For the simulation, L = 1 and α = 0.001 were assumed.
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Example 2 in one dimension

Green line represents the function f (x) = x(L− x) of the initial condition.
Blue line with the diamonds represents the approximate solution with the
finite differences and the red line is the analytical solution, both for a time
t = 30.
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Heat equation in two dimensions

Lamina: When we consider a rect-
angular sheet, the solution to the
heat equation by finite difference
is written as

uki−1,j uki+1,juki ,j

uk+1
i ,j

uki ,j+1

uki ,j−1

Spatial
discretization

T
e
m

p
o
ra

ry
d
is
c
re

ti
z
a
ti
o
n

uk+1
i ,j = r2x

(
uki+1,j + uki−1,j

)
+ r2y

(
uki ,j+1 + uki ,j−1

)
+
(
1 − 2r2x − r2y

)
uki ,j ,

(6)

where rx = α∆t
∆2x

and ry = α∆t
∆2y

. For the solution to be stable, it must be

fulfilled ∆t < 1
4α

(
∆2x +∆2y

)
.
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Example 3 in two dimensions

Consider a thin sheet that measures L×M , the heat equation with boundary
and initial conditions on it are defined as






ut = α (uxx + uyy ) ,

u(x , 0, t) = 0 for all x ∈ [0, L] and t > 0 ,

u(x ,M , t) = 0 for all x ∈ [0, L] and t > 0 ,

u(0, y , t) = 0 for all y ∈ [0,M ] and t > 0 ,

u(L, y , t) = 0 for all y ∈ [0,M ] and t > 0 ,

u(x , y , 0) = xy(1 − x)(1 − y) for all (x , y) ∈ [0, L]× [0,M ] .

The analytical solution of this system is

u(x , y , t) =
∞
∑

m=1

∞
∑

n=1

cmn exp

(

−α

(

m2π2

L2
+

n2π2

M2

)

t

)

sin
(

mπ

L
x
)

sin
(

nπ

M
x
)

(7)

where cmn = 16L2M2

m3n3π6 (1 − (−1)m) (1 − (−1)n). For the simulation, L = 1,
M = 1, and α = 0.001 were assumed.
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Laplacian in a triangular mesh

When the surface is not regular, it is easier to construct a mesh by means
of triangles starting from |V | vertices, where the edges can not be cut from
each other. This way of doing the discretization allows whether the surface
is flat or three-dimensional, where each vertex vi is part of the manifold
(surface).

vi

v1 v2

v3
v4

b

b
b

b
b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

In this situation, Laplacian Operator associated with a vertex vi is written
as

(Lu)i =
∑

j∼i

wij (uj − ui ) . (8)
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Galerkin’s approach

First identity of Green is given by

∫

M

g∆f dA =

∮

∂M

g (∇f · n) ds −

∫

M

(∇g · ∇f ) dA . (9)

Let f be a function in the manifold M , this determines the operator Lf

such that

Lf [g ] =

∫

M

fg dA (10)

for every function g of an integrable square defined on M . The function g is
called test function. If a compact surface without a border is considered,
then ∂M = φ and the Green’s identity allows us to write equality

L∆f [g ] = −

∫

M

(∆f ·∆g) dA = L∆g [f ] .
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Poisson equation

Consider the Poisson equation ∆u = g it can be written by the operator
L, or in its weak formulation, as L∆u[φ] = Lg [φ] that in its integral form
is ∫

M

φ∆u dA =

∫

M

φ g dA .

The function g is known in this approach. While the φ functions are the
test functions. In the case of a triangular mesh these functions will be
called hat function.
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Hat function in a triangular mesh

In the case of triangular mesh of |V | vertices denoted vi , linear functions are
chosen for sections denoted hi = h(vi ) and defined as 1 in the associated
vertex and zero in the other vertices.

b vi

b

b b

bb

bb
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Hat function in a triangular mesh

In the case of triangular mesh of |V | vertices denoted vi , linear functions are
chosen for sections denoted hi = h(vi ) and defined as 1 in the associated
vertex and zero in the other vertices.

b vi

b

b b

bb

bb

If u(vi ) is expressed as a vector −→a , where each component is the value of
u in each vertex vi then it can be approximated by means of equality

u(v) =

|V |
∑

i=1

hiai .

The values of g are known and can be written as the vector
−→
b .
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Poisson equation

With each hi as a test function and by the Galerkin method the Poisson
equation is written as

∫

M

hi ∆u dA =

∫

M

hig dA for each i = 1, 2, . . . , |V |. (11)

Because of Green’s identity, the left side is written as

∫

M

hi∆u dA = −

∫

M

(∇hi · ∇u) dA = −
∑

j

aj

∫

M

(∇hi · ∇hj) dA =
(
Lc
−→a
)

i

where Lc = [Lij ] is a matrix called Laplacian cotangent and whose com-
ponents are

Lij =

∫

M

(∇hi · ∇hj) dA . (12)
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Poisson equation

On the right side you have equality

∫

M

hig dA =
∑

j

bj

∫

M

(hi · hj) dA =
(

A
−→
b
)

i

where A = [Aij ] is the Mass matrix with components

Aij =

∫

M

(hi · hj) dA . (13)

Poisson equation is written as a system of linear equations of the form

Lc
−→a = A

−→
b equivalent to

(
A

−1Lc
)

︸ ︷︷ ︸

Laplacian operator

−→a =
−→
b . (14)
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Laplacian cotangent

Since hi is a linear function by sections in each triangular face then ∇hi is
constant and is also orthogonal to a normal unitary vector −→n to the face.
Consider a triangle with vertices v1, v2 and v3. For hi the expression is
satisfied h(v) − h(v0) = ∇h |v0 · (v − v0) where the following conclusions
are obtained:

⋆ (∇h)v1 is orthogonal to edge v2v3,

⋆ ‖(∇h)v1‖ = 1
h
.

where h is the height of the triangle relative to the vertex v1. Each vector
(∇u)vi lies in the plane that contains the triangle

v1

v2

v3

−→
e23

−→n

(∇h)v1

θ
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Laplacian cotangent

The magnitude of this vector can also be written ‖(∇h)v1‖ = 1
2A

∥
∥−→e23

∥
∥

where A is the area of the triangular face. The gradient associated with
the vertex v1 is written as

(∇h)v1 =
1

2A

(−→n ×−→e23
)
. (15)

While the gradient associated with the triangular face is given by

∇h =
1

2A

3∑

i=1

(−→n ×−→ei
)

(16)

where −→e i is the vector associated with the edge.
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Laplacian cotangent

Since we know the gradient associated with each vertex of a triangular
face, it is now necessary to know the value of the scalar product between
two of these vectors.

Case I: Two functions hi and hj are de-
fined in the same vertex, in this case
hi = hj . With this condition it is shown
that

b

b

b

i

α

j

β

θ

θ

∫

T

(∇hi · ∇hi) dA = A‖∇hα‖
2 =

1

2
(cotβ + cot θ) .

Case II: Functions hi and hj are defined on vertices different but that share
the same edge. In that case we have

∫

T

(∇hα,∇hβ) dA = A (∇hα,∇hβ)

= A‖∇hα‖ ‖∇hβ‖ cos(180o − θ) = −
1

2
cot θ .
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Laplacian cotangent

Applying this to the whole triangular mesh, we have that the Laplacian
cotangent matrix is given by

(Lc)ij =







1
2

∑

k∼i

(cotαk + cotβk) if i = j

− 1
2
(cotαj + cotβj) if j ∼ i

0 otherwise

. (17)

b

i

b

αj

b

βj

b

b

b

b bi

b

j

bαjb βj
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Mass matrix

Mass matrix is a diagonal matrix where the components of the main diag-
onal can be found by any of the following methods:

Case I: Through the barycenters.
Case II: Through the circumcenters.
Case III: A mixed case between the circumcenters of the triangles with an
angle θ < π

2
and the midpoint of the edge opposite the angle when it

measures more than one right angle.

b

b

b

b
b

b

b

b i

j

T

b

b

b

b

b

b
b

b

b

b
b

b
b i

j

T

b

b

b

b

b

b

b

b
b

b

b

b

b

bb i

j

T

b

b

bb

b

b

The use of one method or another depends on the application. If we use
the idea of the barycenter, the components are a third of the area of the
triangle that they indicate in the vertex i .
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Divergence in a triangular mesh

Let X be a vector field that acts on each face of the triangular mesh. Let Ri

be the region formed by the circumcenters of each triangle T determined
by the neighbors at the vertex i .

b
i

Ri

b

b

b

b

b

b

b

θ1
θ1

θ2

−→n 1T

−→n 2T

−→

X T

T

b

b

b

b

b

b

Where −→n1T is a unit vector external to the closed region Ri acting on the

direction of the edge −→e1T , also with −→n2T in respect of −→e2T . And
−→
XT is the

X component that acts on the triangular face T .
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Divergence in a triangular mesh

By the Stokes Theorem applied to this closed region we have
∫

Ri

∇·X dA =

∫

∂Ri

−→
X ·−→n dℓ =

∑

T

[∫

l1T

−→
XT · −→n1T dℓ+

∫

l2T

−→
XT · −→n2T dℓ

]

.

Since −→n1T is a unit vector in the same direction as the edge −→e1T it is written
−→
XT · −→n1T = 1

‖e1T‖

(−→
XT · −→e1T

)

. According to the trigonometric ratios we

have

cot(θ1) =
2l1t
‖e1T‖

equivalent to
1

‖e1T‖
=

cot(θ1)

2l1T
.

Which implies that the scalar product
−→
XT · −→n1T = 1

2l1T
cot(θ1)

(−→
XT · −→e1T

)

is constant with respect to each triangle and it turns out that

∫

Ri

∇ · X dA =
∑

T

1

2

[

cot(θ1)
(−→
XT · −→e1T

)

+ cot(θ2)
(−→
XT · −→e2T

)]

(18)

where e1T and e2T vary on the same sides of a triangle for each fixed vertex
i .
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The problem of Geodesic distance

Let φ be a function defined in M and X a vector field. The functional E [·]
on the manifold is defined as

E [φ] =

∫

M

‖∇φ− X‖
2
dA .

It is possible to demonstrate that this functional is convex and therefore
must have a minimum, by the first identity of Green, it is possible to
demonstrate that

E [φ] = −〈φ,∆φ〉+ 〈φ,∇ · X 〉+ 〈X ,X 〉 .

For this functional the derivative is defined as

DψE [φ] = lim
ǫ→0

E [φ+ ǫψ]− E [φ]

ǫ

whose gradient is ∇E [φ] = 2∇ · X − 2∆φ and finally said gradient is zero
(the minimum) when

∆φ = ∇ · X . (Poisson equation) (19)
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Heat method

This method was presented by Keenan Crane, which allows to calculate
the geodesic distance φ on a manifold through of heat equation. It involves
three steps namely:

Step I: Solve the heat equation ∂u
∂t

= ∆u. Doing a discretization of time

results
ut − u0

t
= ∆ut from where (Id − t∆)ut = u0 ,

where u0 is the inicial condition on a vertex i (Dirac delta). If we consider
the Laplacian operator as the product of the inverse of the mass matrix
with the cotangent operator (spatial discretization), then we have ∆ =
L = A

−1Lc and therefore the previous equation write as

(A − tLc) ut = Auo = δ , (20)

which is a system of linear equations whose solution ut is the distribution
of temperatures in each vertex after a time t.
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Heat method

Step II: Evaluate vector field X = − 1
‖∇u‖∇u by each face. With the

solution obtained for ut in the previous step, we get an expression for the
gradient by means of equality

(∇u)f =
1

2Af

3∑

i=1

ui
(−→n ×−→ei

)
(21)

where Af is the triangular face area, −→n is a normal unit on that face, and
ui is the value of ut at the vertex i .
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Heat method

Step III: Solve the Poisson equation ∆φ = ∇ · X . Known vector field X

in step II, its divergence is given by

∇ · X =
1

2

∑

j

[

cot(θ1)
(−→
Xj ·

−→e1

)

+ cot(θ2)
(−→
Xj ·

−→e2

)]

. (22)

This divergence is calculated for each vertex. Poisson equation can be
solved by means of the Galerkin approximation whose solution is of the

type
(
A

−1Lc
)−→a =

−→
b where b = ∆ · X .
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Interest in this method

Why are we interested in this Method?

We are interested in finding Diffusion Kernels that fit a family of probability
distributions that model a data set. These kernels are obtained with the
objective of making classification on this set of supervised data.

Juan Carlos Arango Parra Discretization of Laplacian Operator



Interest in this method

Why are we interested in this Method?

We are interested in finding Diffusion Kernels that fit a family of probability
distributions that model a data set. These kernels are obtained with the
objective of making classification on this set of supervised data.

Data

Juan Carlos Arango Parra Discretization of Laplacian Operator



Interest in this method

Why are we interested in this Method?

We are interested in finding Diffusion Kernels that fit a family of probability
distributions that model a data set. These kernels are obtained with the
objective of making classification on this set of supervised data.

Data

Decision boundary Support vector

Juan Carlos Arango Parra Discretization of Laplacian Operator



Interest in this method

Why are we interested in this Method?

We are interested in finding Diffusion Kernels that fit a family of probability
distributions that model a data set. These kernels are obtained with the
objective of making classification on this set of supervised data.

Data

Decision boundary Support vector

Margin

Juan Carlos Arango Parra Discretization of Laplacian Operator



Interest in this method

Why are we interested in this Method?

We are interested in finding Diffusion Kernels that fit a family of probability
distributions that model a data set. These kernels are obtained with the
objective of making classification on this set of supervised data.

Data

Decision boundary Support vector

Margin

Juan Carlos Arango Parra Discretization of Laplacian Operator



Interest in this method

Why are we interested in this Method?

We are interested in finding Diffusion Kernels that fit a family of probability
distributions that model a data set. These kernels are obtained with the
objective of making classification on this set of supervised data.

Data

Decision boundary Support vector

Margin

Juan Carlos Arango Parra Discretization of Laplacian Operator



Diffusion kernels in SVM

Classification of Data (SVM) SigmoidPolynomial

Linear Gaussian

Data set Mercer Kernels

Classic look
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Probability
Groups of

Lie symmetries
distributions

families

Information
Heat Equation Heat Kernel

Fisher

Manifold

Information metric Geodesic

Analytically

Simulation

Analytically
Grigor’yan

Heat Method

New look
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